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Abstract. Group DiÆe-Hellman protocols for Authenticated Key Exchange (AKE) are
designed to provide a pool of players with a shared secret key which may later be used,
for example, to achieve multicast message integrity. Over the years, several schemes
have been o�ered. However, no formal treatment for this cryptographic problem has
ever been suggested. In this paper, we present a security model for this problem and
use it to precisely de�ne AKE (with \implicit" authentication) as the fundamental goal,
and the entity-authentication goal as well. We then de�ne in this model the execution
of an authenticated group DiÆe-Hellman scheme and prove its security.

1 Introduction

Group DiÆe-Hellman schemes for Authenticated Key Exchange are designed to pro-
vide a pool of players communicating over an open network with a shared secret key
which may later be used to achieve some cryptographic goals like multicast message
con�dentiality or multicast data integrity. Secure virtual conferencing involving up to
a hundred participants is an example of such a multicast scenario [14]. In this scenario
the group membership is static and known in advance: at startup the participants
would like to engage in a conversation at the end of which they have established a
session key. For this scenario group DiÆe-Hellman schemes are attractive alternatives
to methods that establish a session key between every pair of players in the multicast
group or rely on a centralized key distribution center.

Over the years, several papers [2, 3, 13, 18, 20, 21, 27, 31, 32] have attempted to ex-
tend the well-known DiÆe-Hellman key exchange [17] to the multi-party setting. The
protocols meet a variety of performance attributes but only exhibit an informal analy-
sis showing that they achieve the desired security goals. Some papers exhibit an ad-hoc

analysis for the security of their schemes and some of these schemes have later been
found to be 
awed [21, 26]. Other papers only provide heuristic evidence of security
without quantifying it. The remaining schemes assume authenticated links and thus
do not consider the authentication as part of the protocol design.

In the paradigm of provable security [19] one identi�es a concrete cryptographic
problem to solve (like the group DiÆe-Hellman key exchange) and de�nes a formal
model for this problem. The model captures the capabilities of the adversary and the
capabilities of the players. Within this model one de�nes security goals to capture
what it means for a group DiÆe-Hellman scheme to be secure. And, for a particular
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scheme one exhibits a proof of its security. The security proof aims to show that
the scheme actually achieves the claimed security goals under computational security
assumptions.

The fundamental security goal for a group DiÆe-Hellman scheme to achieve is
Authenticated Key Exchange (with \implicit" authentication) identi�ed as AKE. In
AKE, each player is assured that no other player aside from the arbitrary pool of
players can learn any information about the session key. Another stronger highly
desirable goal for a group DiÆe-Hellman scheme to provide is Mutual Authentication
(MA). In MA, each player is assured that its partners (or pool thereof) actually have
possession of the distributed session key. Pragmatically, MA takes more rounds; one
round of simultaneous broadcasts.

With these security goals in hand, one can analyze the security of a particular
group DiÆe-Hellman scheme and see how it meets the de�nitions. A security analysis
(or proof of security) for the scheme works via reduction from the security of the
scheme to the underlying \hard" problem. A reduction is a successful algorithm for
the \hard" problem that uses an adversary of the scheme as a subroutine.

In this paper we assume honest players. Honest players do not deviate from the
protocol and their instances erase any internal data when terminating. Existing two-
party protocols (e.g., SSL and IPsec) make this assumption. We see the additional
security goal of dealing with dishonest players (like veri�able contributory [2]) as
important in some environments but less important in others [1].

This paper provides major contributions to the solution of the group DiÆe-Hellman
key exchange problem. We �rst present a formal model to help manage the complexity
of de�nitions and proofs for the authenticated group DiÆe-Hellman key exchange. A
model where a process controlled by a player running on some machine is modeled
as an instance of the player, the various types of attacks are modeled by queries
to these instances and the security of the session key is modeled through semantic
security. Moreover, in order to be correctly formalized, the intuition behind mutual
authentication requires cumbersome de�nitions of session IDS and partner IDS which
may be skipped at the �rst reading.

Second, we de�ne in this model the execution of a modi�ed known protocol [31], we
refer to it as AKE1, and show that AKE1 can be proven secure under reasonable and
well-de�ned intractability assumptions. Third, we present a generic transformation for
turning an AKE protocol into a protocol that provides MA and justify its security
under reasonable and well-de�ned intractability assumptions.

The remainder of this paper is organized as follows. The paper starts with some
related work in Section 2 and cryptographic notions in Section 3. The paper continues
with a description of our model of a distributed environment in Section 4 and gives the
precise security de�nitions that should be satis�ed by a group DiÆe-Hellman scheme
in Section 5. Section 6 presents the protocol AKE1 and justi�es its security in the
random oracle model. Section 7 turns AKE1 into a protocol that provides MA and
justi�es its security in the random oracle model.

2 Related Work

Two formal models for secure key exchange have received the most consideration.
The �rst model initiated by Bellare and Rogaway [6, 8] modeled the two-party and
three-party key distribution. This model was further extended by Blake-Wilson et
al. [10, 11] to model the authenticated DiÆe-Hellman key exchange. In this model,
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player instances are modeled as oracles available to the adversary and attacks are
modeled by oracle queries. Recently, Bellare, Pointcheval and Rogaway [5] re�ned this
model to use session IDs as an approach to de�ne the partnering. They also extended
the model to include forward-secrecy, allow password authentication and deal with
dictionary attacks. Our model is derived from [5].

The second formal model is based on the multi-party simulatability technique
and was initiated by Bellare, Canetti and Krawczyk [4]. In this model Bellare et al.
considered DiÆe-Hellman and encryption-based key exchange. Recently Shoup [30]
re�ned this model and showed that the two models are equivalent for two parties
under speci�c conditions. However no such treatment has been provided for the group
setting yet.

The work of Ateniese et al. [2] is of particular interest since it identi�es the funda-
mental and additional desirable security goals of authenticated group DiÆe-Hellman
key exchange. The authors o�er provably secure authenticated protocols and sketch
informal proofs that their protocols achieve these goals. Unfortunately these protocols
have later been found to be 
awed [26].

Other related papers are [23, 24]. Although they do not tackle the exact same
problem and do not achieve the same goal, they still seem relevant enough to mention.

3 Background

We use the following cryptographic notions throughout the paper.

3.1 Concrete Security

In this paper we develop proofs in the framework of concrete provable security. We
provide an exact analysis of the security of the schemes rather than asymptotic ones.
That is, we explicitly quantify the reduction from the security of a scheme to the
security of the underlying \hard" problem(s) on which it is based. This allows us to
know exactly how much security is maintained by the reduction and thus to determine
the strength of the reduction.

In order to quantify the reductions, we de�ne the advantage Advake(A) that a
computationally bounded adversary A will defeat the AKE security goal of a protcol.
The advantage is twice the probability that A will defeat the AKE security goal of
the protcol minus one1.

In order to quantify the reduction, we also consider the probability Succma(A)
that a computationally bounded adversary A will defeat the MA security goal of a
protocol2.

3.2 The Ideal Hash Model

In the ideal hash model, also called the \random oracle model" [7], the cryptographic
hash functions (like SHA or MD5) are viewed as random functions with the appropri-
ate range. Security proofs in this model identify the hash functions as oracles which
produce a truly random value for each new query and identical answers if the same
query is asked twice. Later, in practice, the random functions are instantiated using

1 To defeat AKE security means for A distinguishing the session key from a random value. Hence,
A can trivially defeat AKE with probability 1/2, multiplying by two and substracting one rescales
the probability.

2 To defeat the MA security for A means impersonating a player.
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speci�c functions derived from standard cryptographic hash functions like SHA or
MD5.

Analysis in this idealized model has been quite successful in ensuring security
guarantees of numerous cryptographic schemes provided that the hash function has
no weakness. Security proofs in this model are superior to those provided by ad hoc

protocol designs although they do not, of course, provide the same security guarantees
as those in the standard model.

3.3 The Group DiÆe-Hellman Problems

The Group DiÆe-Hellman schemes have traditionally been designed based on di�erent
intractability assumptions. The schemes of [13, 18] are based on heuristic assumptions
that are not known to be reducible to a well-known \hard" problem. The schemes
of [20, 22, 27] are based on assumptions that are reducible to a well-known \hard"
problem.

In a cyclic prime-order group hgi, the \standard" assumptions that have been used
so far are:

1. The Decisional DiÆe-Hellman (DDH) assumption. Under this assumption, dis-
tinguishing gab from a random value when given ga and gb is computationally
hard.

2. The Group Decisional DiÆe-Hellman (G-DDH) assumption. One considers the
elements g

Q
xi for some subsets of indices i (either all these subsets, except f1; : : :,

ng, or only a part of them) and tries to distinguish gx1:::xn from a random value.

In the ideal hash function model, one usually uses the CDH and G-CDH assumptions:

1. The Computational DiÆe-Hellman (CDH) assumption. This assumption claims
that given two elements ga; gb , it is computationally hard to compute gab.

2. The Group Computational DiÆe-Hellman (G-CDH) assumption. In the G-CDH
problem, one considers the elements g

Q
xi for some subsets of indices i (either

all these subsets, except f1; ::; ng, or only a part of them) and tries to compute
gx1:::xn . G-CDH is believed to be a \hard" problem.

The G-DDH problem appears to have �rst surfaced in the cryptographic literature
in the paper of Steiner et al. [31] which also proves that the DDH assumption im-
plies the G-DDH assumption. Since then, the G-DDH has been used in several other
cryptographic settings [12, 25].

The G-CDH assumption is a potentially weaker intractability assumption than
G-DDH. It is also believed that the CDH assumption implies the G-CDH assumption
but it has not yet been proved. The G-CDH has however, when considered modulo a
composite number, been related to factoring [9].

4 Model

In our model, the adversary A, which is not a player in our formalization, is given
enormous capabilities. It controls all communications between player instances and
can at any time ask an instance to release a session key or a long-lived key. In the rest
of this section we formalize the protocol and the adversary's capabilities.
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4.1 Protocol Participants

We �x a nonempty set ID of n players that want (and are supposed) to participate
in a group DiÆe-Hellman protocol P . The number n of players is polynomial in the
security parameter k.

A player Ui 2 ID can have many instances called oracles, involved in distinct
concurrent executions of P . We denote instance s of player Ui as �

s
i with s 2 N. Also,

when we mean a not �xed member of ID we use U without any index and so denote
an instance of U as �s

U with s 2 N.

4.2 Long-Lived Keys

Each player U 2 ID holds a long-lived key LLU which is either a pair of matching
public/private keys or a symmetric key. LLU is speci�c to U not to one of its instances.
Associated to protocol P is a LL-key generator GLL which at initialization generates
LLU and assigns it to U .

4.3 Session IDS

We de�ne the session IDS (SIDS) for oracle �s
i in an execution of protocol P as

SIDS(�s
i ) = fSIDij : j 2 IDg where SIDij is the concatenation of all 
ows that oracle

Pisi exchanges with oracle �t
j (possibly by the intermediate of A) in an execution of

P . We emphasize that SIDS is public { it does not depend on the session key { and,
thus, is available to the adversary A; A can just listen on the wire and construct it.
We will use SIDs to properly de�ne partnering through the notion of partners IDs
(PIDs).

4.4 Accepting and Terminating

An oracle �s
U accepts when it has enough information to compute a session key SK.

At any time an oracle �s
U can accept and it accepts at most once. As soon as oracle

�s
U accepts, SK and SIDS are de�ned. Now once having accepted �s

U has not yet
terminated.�s

U may want to get con�rmation that its partners have actually computed
SK or that its partners are really the ones it wants to share a session key with. As
soon as �s

U gets this con�rmation message, it terminates { it will not send out any
more messages.

4.5 Oracle Queries

The adversary A has an endless supply of oracles �s
U and makes various queries to

them. Each query models a capability of the adversary. The four queries and their
responses are listed below:

{ Send(�s
U ;m): This query models adversary A sending messages to instances of

players. The adversary A gets back from his query the response which oracle
�s

U would have generated in processing message m. If oracle �s
U has not yet

terminated and the execution of protocol P leads to accepting, variables SIDS are
updated. A query of the form Send(�s

U , \start") initiates an execution of P .
{ Reveal(�s

U ): This query models the attacks resulting in the session key being
revealed. The Reveal query is only available to adversary A if oracle �s

U has ac-
cepted. The Reveal-query unconditionally forces �s

U to release SK which otherwise
is hidden to the adversary.
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{ Corrupt(U): This query models the attacks resulting in the player U 's LL-key been
revealed. Adversary A gets back LLU but does not get the internal data of any
instances of U executing P .

{ Test(�s
U ): This query models the semantic security of the session key SK, namely

the following game, denoted by Gameake(A; P ), between adversary A and the
oracles �s

U involved in the executions of P . During the game, A can ask any of
the above queries, and once, asks a Test-query. Then, one 
ips a coin b and returns
SK if b = 1 or a random string if b = 0. At the end of the game, adversary A
outputs a bit b0 and wins the game if b = b0. The Test-query is asked only once
and is only available if �s

U is Fresh (see section 5).

4.6 Executing the Protocol in the Presence of an Adversary

Choose a protocol P with a session-key space SK, and an adversary A. The security
de�nitions take place in the context of makingA play the above gameGameake(A; P ).
P determines how �s

U behaves in response to messages from the environment. A sends
these messages: it controls all communications between instances; it can at any time
force an oracle �s

U to divulge SK or more seriously LLU ; it can initiate simultaneous
executions of P . This game is initialized by providing coin tosses to GLL, A, all �

s
U ,

and running GLL(1
k) to set LLU . Then

1. Initialize any �s
U to SIDS null, PIDS null, SK null.

2. Initialize adversary A with 1k and access to any �s
U ,

3. Run adversary A and answer oracle queries as de�ned above.

4.7 Discussion

The group DiÆe-Hellman-like protocols [2, 3, 13, 18, 20, 27, 31] are generally speci�ed
using the broadcast communication primitive; the broadcast primitive allows a player
to send messages to an arbitrary pool of players in a single round. However such a
communication convention is irrelevant to our notions of security; for example, one
can always turn a broadcast-based protocol P into a protocol P 0 which sends only one
message in each round and which still meets our de�nitions of security as long as P
does.

The group DiÆe-Hellman-like protocols also employ a di�erent connectivity graph
(e.g, ring or tree) to route messages among players.The connectivity graph allows the
protocols to meet speci�c performance attributes. However the way the messages are
routed among players does not impact our security de�nitions; one can always turn a
protocol P into a protocol P 0 that di�ers only in its message routing.

5 De�nitions of Security

In this section we present the de�nitions that should be satis�ed by a group DiÆe-
Hellman scheme and what breaking a group DiÆe-Hellman scheme means. We uniquely
de�ne the partnering from the session IDS and, thus, it is publicly available to the
adversary3. We present each de�nition in a systematic way: we give an intuition and
then formalize it.

3 In the de�nition of partnering, we do not require that the session key SK computed by partnered
oracles be the same since it can easily be proven that the probability that partnered oracles come
up with di�erent SK is negligible (see Section 7.4).
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Recall that forward-secrecy entails that loss of a LL-key does not compromise the
semantic security of previously-distributed session keys. For the purpose of this paper,
we only consider a weak corruption model, in which the adversary obtains only the
long-lived key and not any internal data (i.e. random bits used by a process). Let's
also recall that a function �(k) is negligible if for every c > 0 there exists a kc > 0 such
that for all k > kc, �(k) < k�c.

5.1 Partnering using SIDS

The partnering de�nition captures the intuitive notion that the players with which
oracle �s

i has exchanged messages are the players with which �s
i believes it has

established a session key. Another simple way to understand the notion of partnering
is that an instance t of a player Uj is a partner of oracle �s

i if �t
j and �s

i have
directly exchanged messages or there exists some sequence of oracles that have directly
exchanged messages from �t

j to �
s
i .

After many executions of P , or in Gameake(A; P ), we say that oracles �s
i and �

t
j

are directly partnered if both oracles accept and SIDS(�s
i ) \ SIDS(�

t
j) 6= ; holds.

We denote the direct partnering as �s
i $ �t

j .

We also say that oracles �s
i and �t

j are partnered if both oracles accept and
if, in the graph GSIDS = (V;E) where V = f�s

U : U 2 ID; i = 1; : : : ; ng and
E = f(�s

i ;�
t
j) : �s

i $ �t
jg the following holds:

9k > 1;� �s1
1
;�s2

2
; : : : ;�sk

k �

with :

�s1
1

= �s
i ; �

sk
k = �t

j; �
si�1
i�1
$ �si

i :

We denote this partnering as �s
i ! �t

j .

We complete in polynomial time (in jV j) the graph GSIDS to obtain the graph of
partnering : GPIDS = (V 0; E0), where V 0 = V and E0 = f(�s

i ;�
t
j) : �s

i ! �t
jg

(see [15] for graph algorithms), and then de�ne the partner IDS for oracle �s
i as:

PIDS(�s
i ) = f�

t
j : �s

i ! �t
jg

Although the above de�nitions may appear quite arti�cial, we emphasize that the
authentication goals need to be de�ned from essentially public criteria (in other words,
from the partnering notion). Claiming \players are mutually authenticated i� they
hold the same SK" would lead to unpractical de�nitions. The mutual authentication
is essentialy a public, veri�able notion.

5.2 Freshness

The freshness de�nition captures the intuitive notion that a session key SK is de�ned
Fresh if no oracle is corrupted at that moment, and it remains Fresh if no Reveal-
query is asked later to the oracle or one of its partners. More precisely, an oracle �s

U

is Fresh (or holds a Fresh SK) if the following four conditions hold: First, �s
U has ac-

cepted. Second, nobody has been asked for a Corrupt-query before �s
U accepts. Third,

�s
U has not been asked for a Reveal-query. Fourth, the partners of �s

U , PIDS(�
s
U )

have not been asked for a Reveal-query.
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5.3 AKE Security

In an execution of P , we say an adversary A (computationally bounded) wins if she
asks a single Test-query to a Fresh oracle and correctly guesses the bit b used in the
game Gameake(A; P ). We denote the ake advantage as AdvakeP (A); the advantage is
taken over all bit tosses. Protocol P is an A-secure AKE if AdvakeP (A) is negligible.

5.4 Authentication Security

This de�nition of authentication captures the intuitive notion that it should be hard
for a computationally bounded adversary A to impersonate a player U through one
of its instances �s

U .
In an execution of P , we say adversary A violates player-to-players authenti-

cation (PPsA) for oracle �s
U if �s

U terminates holding SIDS(�s
U ), PIDS(�

s
U ) and

jPIDS(�s
U )j 6= n� 1. We denote the ppsa probability as SuccppsaP (A) and say pro-

tocol P is an A-secure PPsA if SuccppsaP (A) is negligible.
In an execution of P , we say adversary A violates mutual authentication (MA) if

A violates PPsA authentication for at least one oracle �s
U . We name the probability

of such an event the ma success Succma
P (A) and say protocol P is an A-secure MA

if Succma
P (A) is negligible.

Therefore to deal with mutual authentication (or player-to-players authentication
in a similar way), we consider a new game Gamema(A; P ) in which the adversary
exactly plays the same way as in the game Gameake(A; P ) with the same oracle
accesses but with a di�erent goal: to violate the mutual authentication. In this new
game, the adversary is not really interested in the Test-query, in the sense that it can
terminate whenever he wants. However, we leave this query available for simplicity.

5.5 Secure Signature Schemes

A signature scheme is de�ned by the following [28]:

{ Key generation algorithm G. On input 1k with security parameter k, the algorithm
G produces a pair (Kp;Ks) of matching public and secret keys. Algorithm G is
probabilistic.

{ Signing algorithm �. Given a message m and (Kp;Ks), � produces a signature
�. Algorithm � might be probabilistic.

{ Veri�cation algorithm V . Given a signature �, a message m and Kp, V tests
whether � is a valid signature of m with respect to Ks. In general, algorithm V
is not probabilistic.

The signature scheme is (t; �)-CMA-secure if there is no adversary A which
can get a probability greater than � in mounting an existential forgery under an
adaptively chosen-message attack (CMA) within time t. We denote this probability �
as Succcma

� (A).

5.6 Decisional and Computational DiÆe-Hellman Assumptions

Let G = hgi be a cyclic group of prime order p and x1; x2; r chosen at random in Zp.
A (T; �)-DDH-distinguisher for G is a probabilistic Turing machine � running in time
T that given any triplet (gx1 ; gx2 ; gr) outputs \True" or \False" such that:���Pr[�(gx1 ; gx2 ; gx1x2) = \True"] �

Pr[�(gx1 ; gx2 ; gr) = \True"]
��� � �
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We denote this di�erence of probabilities as Advddh
G

(�). The DDH problem is (T; �)-
intractable if there is no (T; �)-DDH-distinguisher for G .

A (T; �)-CDH-attacker for G is a probabilistic Turing machine � running in time
T that given (gx1 ; gx2), outputs gx1x2 with probability at least � = SucccdhG (�). The
CDH problem is (T; �)-intractable if there is no (T; �)-attacker for G .

5.7 Group Computational DiÆe-Hellman Assumption (G-CDH)

Let G = hgi be a cyclic group of prime order p and n be a polynomially-bounded
integer. Let In be f1; : : : ; ng, P(In) be the set of all subsets of In and � be a subset
of P(In) such that In =2 � .

We de�ne the Group DiÆe-Hellman distribution relative to � as:

G-CDH� =
n [

J2�

(J; g
Q
j2J xj ) j (x1; : : : ; xn) 2R Z

n
p

o

If � = P(I)nfIng, we say that G-CDH� is the Full Generalized DiÆe-Hellman dis-

tribution [12, 25, 31].

Given � , a (T; �) G-CDH� -attacker for G is a probabilistic Turing machine �
running in time T that given G-CDH� outputs gx1���xn with probability at least �. We
denote this probability by Succ

gcdh
G

(�). The G-CDH� problem is (T; �)-intractable
if there is no (T; �)-G-CDH� -attacker for G .

In the same way, we can de�ne a G-DDH� distinguisher as a probabilistic Turing
machine that given G-CDH� and either gx1���xn or a random value, can distinguish
the two situations with non-negligible probability.

5.8 Adversary's Resources.

The security is formulated as a function of the amount of resources the adversary A
expends. The resources are:

{ t time of computing;

{ qse; qre; qco number of Send, Reveal and Corrupt queries adversary A respectively
makes.

By notation Adv(t; : : :) or Succ(t; : : :), we mean the maximum values of Adv(A) or
Succ(A) respectively, over all adversaries A that expend at most the speci�ed amount
of resources.

6 A Secure Authenticated Group DiÆe-Hellman Scheme

We �rst introduce the protocol AKE1 and then prove it is a secure AKE scheme in
the ideal hash model. Then at the end of this section we comment on the security
theorem and the proof.

6.1 Preliminaries

In the following we assume the ideal hash function model. We use a hash function H
from f0; 1g� to f0; 1g` where ` is a security parameter. The session-key space SK asso-
ciated to this protocol is f0; 1g` equipped with a uniform distribution. In this model,
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U 1 U 2 U 3 U 4

x1
R
 [0; p� 1]

X1 := fg; gx1g
Fl1 := fID;X1g

[Fl1]U1
�����������!

[Fl2]U2
�����������!

[Fl3]U3
�����������!

V (Fl1)
?
= 1 V (Fl2)

?
= 1 V (Fl3)

?
= 1

x2
R
 [0; p� 1] x3

R
 [0; p� 1] x4

R
 [0; p� 1]

X2 := fgx1 ; gx2 ; gx1x2g X3 := fgx1x2 ; gx1x3 ; X4 := fgx1x2x4 ; gx1x3x4 ;
gx2x3 ; gx1x2x3g gx2x3x4 ; gx1x2x3g

Fl2 := fID;X2g Fl3 := fID;X3g Fl4 := fID;X4g
K := (gx1x2x3 )x4

[Fl4]U4
 �����������

[Fl4]U4
 ����������� ����� ���� ��

[Fl4]U4
 ����������� ����� ��� ��� ����� ���� ��

V (Fl4)
?
= 1 V (Fl4)

?
= 1 V (Fl4)

?
= 1

K := (gx2x3x4 )x1 K := (gx1x3x4 )x2 K := (gx1x2x4 )x3

Fig. 1. Protocol AKE1. An example of a honest execution with 4 players: ID = fU1; U2; U3; U4g. The
shared session key SK is sk = H(U1; U2; U3; U4; F l4; g

x1x2x3x4).

a new query, namely Hash-query is available to adversary A; the adversary can submit
an arbitraly long bit string and obtain the value of H(m).

Arithmetic is in a �nite cyclic group G =< g > of order a k-bit prime number q.
This group could be a prime subgroup of Z�

p, or it could be an (hyper)-elliptic curve
group. We denote the operation multiplicatively.

6.2 Description of AKE1

This is a protocol in which the players ID = fUi : 1 � i � ng are arranged in a
ring, the name of the players are in the protocol 
ows, the 
ows are signed using the
long-lived key LLU , the session key SK is sk = H(ID; F ln; g

x1:::xn), where F ln is the
down
ow; SIDS and PIDS are appropriately de�ned.

As illustrated by the example on Figure 1, the protocol consists of two stages: up-

ow and down-
ow. In the up-
ow the player raises the received intermediate values
to the power of its private input and forwards the result to the next player in the
ring. The down-
ow takes place when Un receives the last up-
ow and computes sk.
Un raises the intermediate values it has received to the power of its private key and
broadcasts the result (i.e. F ln) which allows the other players to construct sk, granted
their private data.

6.3 Security Theorem

Let P be the AKE1 protocol, GLL be the associated LL-key generator. One can state
the following security result:

Theorem 1. Let A be an adversary against the AKE security of protocol P within

a time bound t, after qse interactions with the parties and qh hash queries. Then we

have:
AdvakeP (t; qse; qh) �

2qhq
n
se � Succ

gcdh�
G

(t0) + n � Succcma
� (t00)

where t0 � t + qsenTexp(k) and t00 � t + qsenTexp(k); Texp(k) is the time of computa-

tion required for an exponentiation modulo a k-bit number and � corresponds to the
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elements adversary A can possibly view:

� =
[

1�j�n

ffi j 1 � i � j; i 6= lg j 1 � l � jg

Before describing the details of the proof let us �rst provide the main ideas. We
consider an adversary A attacking the protocol P and then \breaking" the AKE
security. A would have carried out her attack in di�erent ways: (1) she may have
got her advantage by changing the content of the 
ows, hence forging a signature
with respect to some player's long-lived public key (otherwise, the player would have
rejected). We will then use A to build a forger by \guessing" for which player A will
produce her forgery. (2) she may have broken the scheme without altering the content
of the 
ows. We will use it to solve an instance of the G-CDH problem, by \guessing"
the moment at which A will make the Test-query and by injecting into the game the
elements from the G-CDH instance received as input.

6.4 Security Proof

Proof. Let A be an adversary that can get an advantage � in breaking the AKE
security of protocol P within time t. We construct from it a (t00; �00)-forger F and a
(t0; �0)-G-CDH� -attacker � .

Forger F . Let's assume that A breaks the protocol P because she forges a signature
with respect to some player's (public) LL-key and she is able to do it with probability
greater than �. We construct from it a (t00; �00)-forger F which outputs a forgery (�;m)
with respect to a given (public) LL-key Kp (Of course Kp was produced by GLL(1

k)).

F receives as input Kp and access to a (public) signing oracle. F provides coin
tosses to GLL, A and all �s

U . F picks at random i 2 [1; n] and runs GLL(1
k) to set the

players' LL-keys. However for player i, F sets LLi to Kp. F then starts running A as
a subroutine and answers the oracle queries made by A as explained below. F also
uses a variable K, initially set to ;.

When A makes a Send-query, F answers in a straightforward way, using LL-keys
to sign the 
ows, except if the query is of the form Send(�s

i ; �) (8s 2 N). In this
latter case the answer goes through the signing oracle, and F stores in K the request
to the signing oracle and the signing oracle response. When A makes a Reveal-query
or a Test-query, F answers in a straightforward way. When A makes a Corrupt-query,
F answers in a straightforward way except if the query is of the form Corrupt(�s

i )
(8s 2 N). In this latter case, since F does not know the LL-key Ks for player i, F
stops and outputs \Fail". But anyway, no signature forgery occurred before, and so,
such an execution can be used with the other reduction. When A makes a Hash-query,
F answers the query as depicted on Figure 2.

If A has made a query of the form Send(�; (�;m)) where � is a valid signature on
m with respect to Kp and (�;m) =2 K, then F halts and outputs (�;m) as a forgery.
Otherwise the process stops when A terminates and F outputs \Fail".

The probability that F outputs a forgery is the probability that A produces a
valid 
ow by itself multiplied to the probability to \correctly guess" the value of i:

Succcma
� (F) �

�

n
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The runnning time of F is the running time of A added to the time to process the
Send-queries. This is essentially a constant value. This gives the formula for t:

t00 � t+ qsenTexp(k)

G-CDH� -attacker �. Let's assume that A gets its advantage without producing a
forgery. (Here with probability greater than � the valid 
ows signed with LLU come
from oracle U before U gets corrupted and not from A.) We construct from A a (t0; �0)-
G-CDH� -attacker � which receives as input an instance of G-CDH� and outputs the
group DiÆe-Hellman secret value relative to this instance.

� receives as input an instance D = ((f1g; gx1 ); (f2g; gx2 ); : : : ; F ln) of the G-
CDH� problem, where F ln are the terms corresponding to subsets of indices of car-
dinality n � 1 (with the same structure as in the broadcast). � provides coin tosses
to GLL, A, all �

s
U , and runs GLL(1

k) to set the players' LL-keys. � picks at random
n values u1 through un in [1; qse]

n. Then � starts running A as a subroutine and
answers the oracle queries made by A as explained below. � uses a set of counters ci
through cn, initially set to zero.

When A makes a Send-query to some instance of player Ui, then � increments ci
and proceeds as in protocol P using a random value. However if ci = ui and m is the

ow corresponding to the instance D, � answers using the elements from the instance
D. When A makes a Corrupt-query, � answers in a straightforward way. When A
makes a Hash-query, F answers the query as depicted on Figure 2. When A makes
a Reveal-query, � answers in straightforward way. However, if the session key has to
be constructed from the instance D, � halts and outputs \Fail". When A makes the
Test-query, � answers with a random string.

We emphasize that, since � knows all the keys except for one execution of P (i.e.
the execution involving D in all 
ows), this simulation is perfectly indistinguishable
from an execution of the real protocol P .

The probability that � correctly \guesses" on which session key A will make the
Test-query is the probability that � correctly \guesses" the values u1 through un.
That is:

Æ =
Y
n

1

qse
=

1

qnse

In this case, � is actually able to answer to all Reveal-queries, since Reveal-query
must be asked to a Fresh oracle, holding a key di�erent from the Test-ed one, and
thus, known to �.

Then, when A terminates outputting a bit b0, � looks in the H-list to see if some
queries of the form Hash(U1; : : : ; Un; F ln; �) have been asked. If so, � chooses at
random one of them, halts and outputs the remaining part \�" of the query.

Let Ask be the event that A makes a Hash-query on (U1; :::; Un; F ln; g
x1���xn). The

advantage of A in breaking the AKE security without forging a signature, conditioned
by the fact that we correctly guessed all ui's, is:

�� �

qnse
� AdvakeP (A) = 2Pr[b = b0]� 1

= 2Pr[b = b0j:Ask] Pr[:Ask] +

2Pr[b = b0jAsk] Pr[Ask] � 1

� 2Pr[b = b0j:Ask]� 1 + 2Pr[Ask] = 2Pr[Ask]
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In the random oracle model, 2 Pr[b = b0j:Ask] � 1 = 0, since A can not gain any
advantage on a random value without asking for it.

The success probability of � is the probability that A asks the correct value to the
hash oracle multiplied by the probability that � correctly chooses among the possible
Hash-queries:

Succ
gcdh�
G

(�) �
Pr[Ask]

qh
�

�� �

2qnse
�

1

qh

The runnning time of � is the running time of A added to the time to process
the Send-queries. This is essentially n modular exponentiation computation per Send-
query. Then

t0 � t+ qsenTexp(k)

Hash function H

query m
���������! If m 62 H-list, then r

R
 2 f0; 1g`,

and H-list H-listk(m; r).
H(m)

 ��������� Otherwise, r is taken from H-list.

H-list

List Members Meaning

H-list (m; r) H(m) = r;
Hash query has been made on m

Fig. 2. Hash-oracle simulation.

6.5 Result Analysis

The quality of the reduction measures how much security of the G-CDH and the sig-
nature scheme is injected into AKE1. We view qse as an upper bound on the number
of queries we are willing to allow (e.g., qse = 230 and qh = 260) and n as the number of
participants involved in the execution of AKE1 (e.g., current scienti�c collaborations
involve up to 20 participants). Moreover, because of the network latency and compu-
tation cost, the practicability of AKE1 becomes an issue with groups larger than 40
members operating in a wide-area environment [1].

We may then ask how the security proof is meaningful in practice. First, one has
to be clear that such a proof of security is much better than no proof at all and that
AKE1 is the �rst AKE scheme to have a proof of security. Second, several techniques
can be used to carry out a proof which achieves a better (or tighter) security reduction.

In e�ect the reduction can be improved using a technique of Shoup [29]. Shoup's
technique runs two attackers, similar to the one above, in parallel on two di�erent
instances obtained by random self-reducibility [25], and a common value will appear
in the H-list of the attackers with overwhelming probability and thus leads to the
right solution for G-CDH.

The reduction can also be improved if the security of AKE1 is based on the G-DDH
assumption. The idea is to use a technique similar to the one used by Coron [16] and
to use the random self-reducibility of G-DDH� to generate many instances D0 from
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D such that all the D0 lie in the same distribution as D, either G-DDH� or R� . Such
instances are randomly used. But then, the resulting session key will be unknown.
Therefore, the reduction will work if all the Reveal-queries are asked for known session
keys, but the Test-query is asked to one involving an instance D0. By correctly tuning
the probability of using a D0 instance or not, one can slightly improve the eÆciency
of the reduction4. Moreover, if the session key is simply �xed as gx1���xn the proof can
be carried out in the standard model.

7 Adding Authentication

In this section we sketch generic transformations for turning an AKE protocol P
into a protocol P 0 that provides player-to-players authentication (PPsA) and mutual
authentication (MA). Then, we prove in the ideal hash model that the transformation
provides a secure MA scheme and comment on the security theorem.

It may be argued that PPsA and MA are not absolutely necessary, can be achieved
by a variety of means (e.g, encryption could begin on some carefully chosen known
data) or even that MA does give real security guarantees in practice. However, the
task of a cryptographic protocol designer is to make no assumptions about how system
designers will use the session key and provide application developers with protocols
requiring only a minimal degree of cryptographic awarness.

7.1 Approach

The well-known approach uses the shared session key to construct a simple \authen-
ticator" for the other parties. However, one has to be careful in the details and this
is a common \error" in the design of authentication protocols. Actually the protocols
o�ered by Ateniese et al. [2] are seen insecure under our de�nitions since the \authen-
ticator" is computed as the hash of the session key sk and sk is the same as the �nal
session key SK. The adversary learns some information about the session key sk { the
hash of sk { and can use it to distinguish SK from a session key selected at random
from session-key space SK. Therefore these protocols sacri�ce the security goal that
a protocol establishes a semantically secure session key.

7.2 Description of the Transformations

The transformation AddPPsA (adding player-to-players authentication) for player U
consists of adding to protocol P one more round in such a way that the partners of U
are convinced they share sk with U . As an example, on �gure 3 player Un sends out
H(sk; n).

More formally the transformation AddPPsA works as follows. Suppose that in
protocol P player Un has accepted holding skUn ; sidUn ; pidUn and has terminated. In
protocol P 0 = AddPPs(P ), Un sends out one additional 
ow authUn = H(skUn ; n),
accepts holding sk0Un = H(skUn ; 0), sid

0
Un

= sidUn , pid
0
Un

= pidUn , and then termi-
nates. Suppose now that in P the partner Ui (i 6= n) of Un has accepted holding
skUi ; sidUi ; pidUi and has terminated. In protocol P 0, Ui receives one additional 
ow
authUn and checks if authUn = H(skUi ; n). If so, then Ui accepts holding sk0Ui =
H(skUi ; 0); sid

0
Ui

= sidUi ; pid
0
Ui

= pidUi , and then terminates. Otherwise, Ui rejects.

4 However, such a proof gets complicated when one adds in the concern of forward-secrecy. Instead
the ideas in the proof of Section 6.4 can easily be extended to show that AKE1 guarantees forward-
secrecy.
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The transformation AddMA (add mutual authentication) is analogous to Ad-
dPPsA. It consists of adding to protocol P one more round of simultaneous broadcasts.
More precisely, all the players Ui send out H(sk; i) and they all check the received
values.

U i U n

Protocol P which outputs
SIDS= sids, PIDS= pids, and

comes up with SK= skUi comes up with SK= skUn
authUn  H(skUn ; n)
sk0Un  H(skUn ; 0)

authUn ���������

AuthUn
?
= H(skUi ; n)

sk0Ui  H(skUi ; 0)

Fig. 3. Transformation P 0 = AddPPsA(P ). The shared session key SK is sk0 = H(sk; 0), SIDS and
PIDS are unchanged.

7.3 Security Theorem

Let P be an AKE protocol, SK be the session-key space and G be the associated
LL-key generator. One can state the following security result about P 0=AddMA(P ):

Theorem 2. Let A be an adversary against the security of protocol P 0 within a time

bound t, after qse interactions with the parties and qh hash queries. Then we have:

AdvakeP 0 (t; qse; qh) � AdvakeP (t; qse; qh) +
qh
2`

Succma
P 0 (t; qse; qh) � AdvakeP (t0; qse; qh) +

nqh
2`

where t0 � t+ (qse + qh)O(1).

Before describing the details of the proof let us �rst provide the main ideas. We
�rst show that the transformation AddMA preserves the AKE security (session key
indistinguishability) of protocol P . We then show that impersonating a player in MA
rounds implies for A to \fake" the authentication value Authi. Since this value goes
through the hash function, it implies that A has computed the session key value sk
and, thus, made the Hash-query.

7.4 Security Proof

Proof. Let A be an adversary that can get an advantage AdvakeP 0 (t; qse; qh) in break-
ing the AKE security of protocol P 0=AddMA(P ) within time t or can succeed with
probability Succma

P 0 (t; qse; qh) in breaking the MA security of protocol P 0. We construct
from it an attacker B that gets an advantage AdvakeP (t0; qse; qh) in breaking the AKE
security of protocol P within time t0.
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Disrupt Partnering We are not concerned with partnered oracles coming up with
di�erent session keys, since our de�nition of partnering implies the oracles have ex-
changed exactly the same 
ows.

We also note that the probability that two instances of a given player come to
be partnered is negligible; in fact, it would mean they have chosen the same random

value in the protocols, which occurs with probability O( q
2
se

2k
).

AKE break We construct from A an adversary B that gets an advantage �0 in
breaking the AKE security of P within time t0.
B provides coin tosses to GLL,A, all�

s
U and starts running the gameGameake(A; P 0).

B answers the queries made by A as follow.
The oracle queries made by A to B are relayed by B and the answers are subse-

quently returned to A. However B's answers to Reveal and Test-queries go through
the Hash-oracle to be padded with \0" before being returned to A. The Hash-queries
are answered as usual Figure 2.

In the ideal hash model, in which H is seen as a random function, A can not get
any advantage in correctly guessing the bit involved in the Test-query without having
made a query of the form H(sk; 0). So Pr[A asks (sk; 0)] � AdvakeP (A) � �.

At some point A makes a Test-query to oracle �s
U , B gets value � and relays

H(�; 0) to A. B then looks for � in the H-list: B outputs 1 if (�; 0) is in the H-list of
queries made by A, otherwise B 
ips a coin and outputs the coin value.

The advantage of B to winGameake(B; P ) is the probability that A made of query
of the form H(sk; 0) minus the probability that A made such query by \pure chance":

AdvakeP (B) = Pr [A asks (sk; 0)]�
qh
2`
� AdvakeP 0 (A)�

qh
2`

The runnning time of B is the running time of A added to the time to process the
Send-queries and Hash-queries:

t0 � t+ (qse + qh)O(1)

MA break We construct from A an adversary B which gets advantage �0 in breaking
the AKE security of P within time t0.
B provides coin tosses to GLL,A, all�

s
U , and starts running the gameGamema(A; P 0).

B answers the oracle queries made by A as follows.
The oracle queries made by A to B are relayed by B and the answers are subse-

quently returned to A. However B's answers to Reveal and Test-queries go through
the Hash-oracle to be padded with \0" before being returned to A. The Hash-queries
are answered as usual Figure 2.

In the ideal hash model, in which H is seen as a random function, A can not get
any advantage in impersonating some oracle �si

i without having made a query of the
form H(sk; i).

At some point B makes a Test-query to oracle �s
U and gets value � . Later A

terminates and B looks for � in H-list: B outputs 1 if (�; �) is in H-list, otherwise B

ips a coin and outputs the coin value. (�; i) is in H-list if A violates PPsA for oracle
�si

i except with probability qh � n �
1

2`
.

The advantage of B to winGameake(B; P ) is the probability that A makes a query
of the form H(sk; i):

AdvakeP (B) = Pr [A asks (sk; i)] � ��
nqh
2`
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The runnning time of B is the running time of A added to the time to process the
Send-queries and Hash-queries:

t0 � t+ (qse + qh)O(1)

7.5 Result Analysis

The quality of the reduction measures how much security of the AKE security strength
of protocol P is injected into protocol P 0. We see that the reduction injects much of
the security strength of protocol P into P 0. In e�ect we can see it since AdvakeP 0 (t; qse; qh)
(Succma

P 0 (t; qse; qh) respectively) is inside an additive factor of Adv
ake
P (t; qse; qh) (Adv

ake
P (t0; qse; qh)

respectively) and this additive factor decreases exponentially with `.

8 Conclusion

In this paper we presented a model for the group DiÆe-Hellman key exchange problem
derived from the model of Bellare et al. [5]. Some speci�c features of our approach
that were introduced to deal with the DiÆe-Hellman key exchange in the multi-party
setting are: de�ning the notion of session IDS to be a set of session ID, de�ning the
notion of partnering to be a graph of partner ID. Addressed in detail in this paper were
two security goals of the group DiÆe-Hellman key exchange: the authenticated key
exchange and the mutual authentication. For each we presented a de�nition, a protocol
and a security proof in the ideal hash model that the protocol meets its goals. This
paper provided the �rst formal treatment of the authenticated group DiÆe-Hellman
key exchange problem.

The model and de�nitions introduced in this paper may seem limited at �rst sight.
Our �nal goal is a model to help manage the complexity of de�nitions and proofs in
the following broader scenario. A scenario in which the group membership is dynamic
rather than static: after the initialization phase, and throughout the lifetime of the
multicast group, the parties would like to engage in a conversation after each change
in the membership at the end of which the session key, sk, is updated to sk0. The
new session key is known to nobody but the parties in the multicast group. We are
currently extending our model to encompass this larger scenario.
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